Random Numbers
- RAND — a random number between zero and one
- RANDBERNOULLI — random variate from a Bernoulli distribution
- RANDBETA — random variate from a Beta distribution
- RANDBETWEEN — a random integer number between and including bottom and top
- RANDBINOM — random variate from a binomial distribution
- RANDCAUCHY — random variate from a Cauchy or Lorentz distribution
- RANDCHISQ — random variate from a Chi-square distribution
- RANDDISCRETE — random variate from a finite discrete distribution
- RANDEXP — random variate from an exponential distribution
- RANDEXPPOW — random variate from an exponential power distribution
- RANDFDIST — random variate from an F distribution
- RANDGAMMA — random variate from a Gamma distribution
- RANDGEOM — random variate from a geometric distribution
- RANDGUMBEL — random variate from a Gumbel distribution
- RANDHYPERG — random variate from a hypergeometric distribution
- RANDLANDAU — random variate from the Landau distribution
- RANDLAPLACE — random variate from a Laplace distribution
- RANDLEVY — random variate from a Lévy distribution
- RANDLOG — random variate from a logarithmic distribution
- RANDLOGISTIC — random variate from a logistic distribution
- RANDLOGNORM — random variate from a lognormal distribution
- RANDNEGBINOM — random variate from a negative binomial distribution
- RANDNORM — random variate from a normal distribution
- RANDNORMTAIL — random variate from the upper tail of a normal distribution with mean 0
- RANDPARETO — random variate from a Pareto distribution
- RANDPOISSON — random variate from a Poisson distribution
- RANDRAYLEIGH — random variate from a Rayleigh distribution
- RANDRAYLEIGHTAIL — random variate from the tail of a Rayleigh distribution
- RANDSNORM — random variate from a skew-normal distribution
- RANDSTDIST — random variate from a skew-t distribution
- RANDTDIST — random variate from a Student t distribution
- RANDUNIFORM — random variate from the uniform distribution from a to b
- RANDWEIBULL — random variate from a Weibull distribution
- SIMTABLE — one of the values in the given argument list depending on the round number of the simulation tool
RAND
Synopsis
RAND()
Microsoft Excel Compatibility
This function is Excel compatible.
See also
RANDBERNOULLI
Synopsis
RANDBERNOULLI(p)
Arguments
p: probability of success
Note
If p < 0 or p > 1 RANDBERNOULLI returns #NUM!
See also
RANDBETA
Synopsis
RANDBETA(a,b)
Arguments
a: parameter of the Beta distribution
b: parameter of the Beta distribution
RANDBETWEEN
Synopsis
RANDBETWEEN(bottom,top)
Arguments
bottom: lower limit
top: upper limit
Note
If bottom > top, RANDBETWEEN returns #NUM!
Microsoft Excel Compatibility
This function is Excel compatible.
See also
RANDBINOM
Synopsis
RANDBINOM(p,n)
Arguments
p: probability of success in a single trial
n: number of trials
Note
If p < 0 or p > 1 RANDBINOM returns #NUM! If n < 0 RANDBINOM returns #NUM!
See also
RANDCAUCHY
Synopsis
RANDCAUCHY(a)
Arguments
a: scale parameter of the distribution
Note
If a < 0 RANDCAUCHY returns #NUM!
See also
RAND.
RANDCHISQ
Synopsis
RANDCHISQ(df)
Arguments
df: degrees of freedom
RANDDISCRETE
Synopsis
RANDDISCRETE(val_range,prob_range)
Arguments
val_range: possible values of the random variable
prob_range: probabilities of the corresponding values in val_range, defaults to equal probabilities
Description
RANDDISCRETE returns one of the values in the val_range. The probabilities for each value are given in the prob_range.
Note
If the sum of all values in prob_range is not one, RANDDISCRETE returns #NUM! If val_range and prob_range are not the same size, RANDDISCRETE returns #NUM! If val_range or prob_range is not a range, RANDDISCRETE returns #VALUE!
See also
RANDEXP
Synopsis
RANDEXP(b)
Arguments
b: parameter of the exponential distribution
See also
RANDEXPPOW
Synopsis
RANDEXPPOW(a,b)
Arguments
a: scale parameter of the exponential power distribution
b: exponent of the exponential power distribution
Description
For b = 1 the exponential power distribution reduces to the Laplace distribution.
For b = 2 the exponential power distribution reduces to the normal distribution with σ = a/sqrt(2)
See also
RAND.
RANDFDIST
Synopsis
RANDFDIST(df1,df2)
Arguments
df1: numerator degrees of freedom
df2: denominator degrees of freedom
RANDGAMMA
Synopsis
RANDGAMMA(a,b)
Arguments
a: shape parameter of the Gamma distribution
b: scale parameter of the Gamma distribution
Note
If a ≤ 0, RANDGAMMA returns #NUM!
See also
RAND.
RANDGEOM
Synopsis
RANDGEOM(p)
Arguments
p: probability of success in a single trial
Note
If p < 0 or p > 1 RANDGEOM returns #NUM!
See also
RAND.
RANDGUMBEL
Synopsis
RANDGUMBEL(a,b,type)
Arguments
a: parameter of the Gumbel distribution
b: parameter of the Gumbel distribution
type: type of the Gumbel distribution, defaults to 1
Note
If type is neither 1 nor 2, RANDGUMBEL returns #NUM!
See also
RAND.
RANDHYPERG
Synopsis
RANDHYPERG(n1,n2,t)
Arguments
n1: number of objects of type 1
n2: number of objects of type 2
t: total number of objects selected
See also
RAND.
RANDLANDAU
Synopsis
RANDLANDAU()
See also
RAND.
RANDLAPLACE
Synopsis
RANDLAPLACE(a)
Arguments
a: parameter of the Laplace distribution
See also
RAND.
RANDLEVY
Synopsis
RANDLEVY(c,α,β)
Arguments
c: parameter of the Lévy distribution
α: parameter of the Lévy distribution
β: parameter of the Lévy distribution, defaults to 0
Description
For α = 1, β=0, the Lévy distribution reduces to the Cauchy (or Lorentzian) distribution.
For α = 2, β=0, the Lévy distribution reduces to the normal distribution.
Note
If α ≤ 0 or α > 2, RANDLEVY returns #NUM! If β < -1 or β > 1, RANDLEVY returns #NUM!
See also
RAND.
RANDLOG
Synopsis
RANDLOG(p)
Arguments
p: probability
Note
If p < 0 or p > 1 RANDLOG returns #NUM!
See also
RAND.
RANDLOGISTIC
Synopsis
RANDLOGISTIC(a)
Arguments
a: parameter of the logistic distribution
See also
RAND.
RANDLOGNORM
Synopsis
RANDLOGNORM(ζ,σ)
Arguments
ζ: parameter of the lognormal distribution
σ: standard deviation of the distribution
Note
If σ < 0, RANDLOGNORM returns #NUM!
See also
RAND.
RANDNEGBINOM
Synopsis
RANDNEGBINOM(p,n)
Arguments
p: probability of success in a single trial
n: number of failures
Note
If p < 0 or p > 1 RANDNEGBINOM returns #NUM! If n < 1 RANDNEGBINOM returns #NUM!
See also
RANDNORM
Synopsis
RANDNORM(μ,σ)
Arguments
μ: mean of the distribution
σ: standard deviation of the distribution
Note
If σ < 0, RANDNORM returns #NUM!
See also
RAND.
RANDNORMTAIL
Synopsis
RANDNORMTAIL(a,σ)
Arguments
a: lower limit of the tail
σ: standard deviation of the normal distribution
Note
The method is based on Marsaglia's famous rectangle-wedge-tail algorithm (Ann Math Stat 32, 894-899 (1961)), with this aspect explained in Knuth, v2, 3rd ed, p139, 586 (exercise 11).
See also
RAND.
RANDPARETO
Synopsis
RANDPARETO(a,b)
Arguments
a: parameter of the Pareto distribution
b: parameter of the Pareto distribution
See also
RAND.
RANDPOISSON
Synopsis
RANDPOISSON(λ)
Arguments
λ: parameter of the Poisson distribution
Note
If λ < 0 RANDPOISSON returns #NUM!
See also
RANDRAYLEIGH
Synopsis
RANDRAYLEIGH(σ)
Arguments
σ: scale parameter of the Rayleigh distribution
See also
RAND.
RANDRAYLEIGHTAIL
Synopsis
RANDRAYLEIGHTAIL(a,σ)
Arguments
a: lower limit of the tail
σ: scale parameter of the Rayleigh distribution
See also
RANDSNORM
Synopsis
RANDSNORM(𝛼,𝜉,𝜔)
Arguments
𝛼: shape parameter of the skew-normal distribution, defaults to 0
𝜉: location parameter of the skew-normal distribution, defaults to 0
𝜔: scale parameter of the skew-normal distribution, defaults to 1
Description
The random variates are drawn from a skew-normal distribution with shape parameter 𝛼. When 𝛼=0, the skewness vanishes, and we obtain the standard normal density; as 𝛼 increases (in absolute value), the skewness of the distribution increases; when 𝛼 approaches infinity the density converges to the so-called half-normal (or folded normal) density function; if the sign of 𝛼 changes, the density is reflected on the opposite side of the vertical axis.
Note
The mean of a skew-normal distribution with location parameter 𝜉=0 is not 0. The standard deviation of a skew-normal distribution with scale parameter 𝜔=1 is not 1. The skewness of a skew-normal distribution is in general not 𝛼. If 𝜔 < 0, RANDSNORM returns #NUM!
See also
RANDSTDIST
Synopsis
RANDSTDIST(df,𝛼)
Arguments
df: degrees of freedom
𝛼: shape parameter of the skew-t distribution, defaults to 0
Note
The mean of a skew-t distribution is not 0. The standard deviation of a skew-t distribution is not 1. The skewness of a skew-t distribution is in general not 𝛼.
RANDTDIST
Synopsis
RANDTDIST(df)
Arguments
df: degrees of freedom
See also
RAND.
RANDUNIFORM
Synopsis
RANDUNIFORM(a,b)
Arguments
a: lower limit of the uniform distribution
b: upper limit of the uniform distribution
Note
If a > b RANDUNIFORM returns #NUM!
See also
RANDWEIBULL
Synopsis
RANDWEIBULL(a,b)
Arguments
a: scale parameter of the Weibull distribution
b: shape parameter of the Weibull distribution
See also
RAND.
SIMTABLE
Synopsis
SIMTABLE(d1,d2,…)
Arguments
d1: first value
d2: second value
Description
SIMTABLE returns one of the values in the given argument list depending on the round number of the simulation tool. When the simulation tool is not activated, SIMTABLE returns d1.
With the simulation tool and the SIMTABLE function you can test given decision variables. Each SIMTABLE function contains the possible values of a simulation variable. In most valid simulation models you should have the same number of values dN for all decision variables. If the simulation is run more rounds than there are values defined, SIMTABLE returns #N/A error (e.g. if A1 contains `=SIMTABLE(1)' and A2 `=SIMTABLE(1,2)', A1 yields #N/A error on the second round).
The successive use of the simulation tool also requires that you give to the tool at least one input variable having RAND() or any other RAND<distribution name>() function in it. On each round, the simulation tool iterates for the given number of rounds over all the input variables to reevaluate them. On each iteration, the values of the output variables are stored, and when the round is completed, descriptive statistical information is created according to the values.